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Summary
Alzheimer’s Disease (AD) is the leading cause of dementia and impairment in
various domains. Recent AD studies, (ie, Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study), collect multimodal data, including longitudinal neu-
rological assessments and magnetic resonance imaging (MRI) data, to better
study the disease progression. Adopting early interventions is essential to slow
AD progression for subjects with mild cognitive impairment (MCI). It is of par-
ticular interest to develop an AD predictive model that leverages multimodal
data and provides accurate personalized predictions. In this article, we propose
a multivariate functional mixed model with MRI data (MFMM-MRI) that simul-
taneously models longitudinal neurological assessments, baseline MRI data,
and the survival outcome (ie, dementia onset) for subjects with MCI at base-
line. Two functional forms (the random-effects model and instantaneous model)
linking the longitudinal and survival process are investigated. We use Markov
Chain Monte Carlo (MCMC) method based on No-U-Turn Sampling (NUTS)
algorithm to obtain posterior samples. We develop a dynamic prediction frame-
work that provides accurate personalized predictions of longitudinal trajectories
and survival probability. We apply MFMM-MRI to the ADNI study and identify
significant associations among longitudinal outcomes, MRI data, and the risk of
dementia onset. The instantaneous model with voxels from the whole brain has
the best prediction performance among all candidate models. The simulation
study supports the validity of the estimation and dynamic prediction method.

K E Y W O R D S
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resonance imaging

1 INTRODUCTION

Alzheimer’s Disease (AD) is the leading cause of dementia and impairment in various domains (eg, cognition, memory,
and daily activities).1 In US, the predicted number of subjects with AD reach 6.5 million in 2022, imposing a signif-
icant health burden.2 Recent AD studies, that is, Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National
Alzheimer’s Coordinating Center (NACC), collect multimodal data, including longitudinal neurological assessments,
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biomarkers, medical imaging, and genomics data to better understand disease severity and progression pattern.3,4 Mild
cognitive impairment (MCI) is an important clinical progression stage of AD.5 Cognition decline and impairment of
one or more cognitive domains are presented in subjects with MCI due to AD. Adopting early personalized inter-
ventions in the MCI stage is essential to delay the time until dementia onset.6 Hence, it is important to develop
an AD predictive model that leverages multimodal data and provides accurate personalized predictions of dementia
onset.

The joint model (JM) is a broadly applicable approach to jointly analyze longitudinal repeated measurements and
survival outcome.7,8 Recently, extensive research works applied the JM framework to investigate AD progression pattern
and predict the risk of dementia onset.9-11 In the JM framework, the longitudinal and survival outcomes are commonly
modelled using generalized mixed models and Cox proportional hazards models, respectively.8 Multiple functional forms
have been investigated to link the association between the latent longitudinal mean and hazard function.12,13 Recently,
the extension of JM to modelling multivariate longitudinal processes is investigated in multiple literature, while com-
plex functional forms are incorporated to model the association between these two processes.14-16 Additionally, Bayesian
shrinkage priors are adopted to determine the most appropriate functional form.17 Dynamic prediction is an important
application of JM, which provides personalized predictions of longitudinal trajectories and the probability of event occur-
rence (eg, dementia onset) based on subject’s latest data,8,18,19 and facilitates clinical decision making, treatment selection,
and counseling the disease progress with patients.

Magnetic resonance imaging (MRI) is an widely used imaging technique that provides detailed anatomical structures
of the whole brain.20,21 A common MRI tool that detects volume change in regions of interest (ROI) for patients with AD
is the structural MRI (sMRI). Voxel-based morphometry (VBM) is a standard analytical method that performs voxel-wise
comparison of the ROI volumes among multiple groups of subjects.22,23 For example, recent literature reported significant
volume atrophy in hippocampus, cortical, and brainstem regions for subjects with early AD as compared with healthy
controls using the VBM analysis.24,25 Alternatively, the volumetric sMRI data can be treated as a functional outcome with
millions of voxels observed on a dense voxel grid, and the functional regression approach can be adopted to handle the
high-dimensional sMRI data as in previous literature.9,11

Functional regression is commonly used to model functional outcomes observed on a discrete grid.26,27 To model
the univariate longitudinal variable as a sparse functional outcome, Guo28 proposed a semi-parametric functional
mixed-effects model (FMEM) that decomposed the latent longitudinal mean into covariate-specific fixed functions and
random effects functions. Yao29 extended the FMEM to the shared latent functional principal components (FPC) model
to jointly analyze the univariate functional longitudinal outcome and the survival process. To model the multivariate lon-
gitudinal outcomes, Li et al10 proposed the non-parametric multivariate functional mixed model (MFMM) that captured
nonlinear longitudinal trajectories and simultaneously modelled the survival outcome, linked by the FPC scores that are
shared among multiple longitudinal outcomes and the outcome-specific FPC scores. On the other hand, it is essential to
model voxel-wise sMRI data at baseline as a functional covariate because brain atrophy in some voxels negatively impact
cognitive functions.9,11 To this end, Zou et al11 used parametric mixed models for multivariate longitudinal outcomes
while modelling the baseline sMRI data as functional covariates. However, the model did not capture complex nonlinear
longitudinal trajectories and was sensitive to model misspecification.

In this article, we propose to extend the flexible non-parametric MFMM proposed by Li et al,10 to a multivariate func-
tional mixed model with MRI data (MFMM-MRI) that jointly models multivariate longitudinal outcomes (ie, neurological
scores), baseline MRI data, and the survival outcome (ie, dementia onset). We decompose the functional volumetric
sMRI data in a similar fashion to the joint and individual variation explained (JIVE) approach.30 Specifically, the MRI
data are decomposed into the joint variation (the function determines the shared variation between longitudinal out-
comes and MRI data) and the individual variation (the function determines the MRI-specific varying pattern). We also
develop dynamic prediction methods that provide personalized predictions of dementia onset for subjects with MCI at
baseline. Comparing with existing literature, our method is novel in three aspects. First, we use a non-parametric func-
tional mixed model to model multivariate longitudinal outcomes and investigate two functional forms of the association
between the longitudinal and survival process, which increase the flexibility in modelling and interpretation. Second, we
include the baseline MRI data as a functional outcome and use a general and non-parametric decomposition similar in
nature with JIVE. Third, we provide personalized predictions of longitudinal outcomes and the probability of remaining
stable MCI, which facilitates clinical prognosis and early personalized interventions. The multivariate functional mixed
model with MRI data (MFMM-MRI) provides personalized predictions of neurological scores and the risk of dementia
onset using longitudinal outcomes, baseline MRI data, and the survival outcome. Additionally, we are able to determine
the associations among those three types of outcomes.
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ZOU et al. 3

This article is structured as follows. In Section 2, we give a brief introduction to the motivating ADNI study. In
Section 3, we illustrate the MFMM-MRI model, its estimation, and the dynamic prediction method. In Section 4, the
MFMM-MRI is applied to the motivating ADNI study. In Section 5, a simulation study is conducted to support the validity
of the estimation and prediction method. In Section 6, we summarize our findings and discuss the limitations and future
directions.

2 MOTIVATION

The development of MFMM-MRI is motivated from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study with
completed ADNI-1/GO/2 stages and the ongoing ADNI-3 stage. The primary objective of the ADNI study is to determine
and predict cognition decline using biomarkers, neurological assessments, medical imaging data, and genetic data for
subjects with different stages of AD.3 Based on a previous finding,31 we select five longitudinal neurological measurements
that are predictive of dementia onset: Alzheimer’s Disease assessment scale - cognitive subscale, 13 items (ADAS-Cog
13), Rey auditory verbal learning test, immediate recall (RAVLT-immediate), RAVLT learning curve (RAVLT-learning),
Mini-mental state examination (MMSE), and clinical dementia rating scale - sum of boxes (CDR-SB).32-35 Higher values in
ADAS-Cog 13 and CDR-SB and lower values in the other outcomes indicate worse cognitive and memory functions and
are associated with faster AD progression. Figure 1 displays a spaghetti plot of these five selected longitudinal outcomes
for randomly selected 15 subjects with MCI at baseline, suggesting the sparsity of longitudinal outcomes. Additionally,
both subjects A and B show an increasing (clinically deteriorating) pattern for ADAS-Cog 13 and CDR-SB scores and a
decreasing (clinically declining) trend for RAVLT and MMSE scores, suggesting that multivariate longitudinal outcomes
are correlated within the same subject. Thus, we adopt the multivariate functional mixed model to model the five selected
longitudinal outcomes observed on a sparse time grid.10

F I G U R E 1 Spaghetti plot of ADAS-Cog 13, RAVLT-immediate, RAVLT-learning, MMSE, and CDR-SB scores for randomly selected 15
subjects with MCI at baseline
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Based on the data downloaded on January 15, 2020, we include 1018 subjects with MCI at baseline from the
ADNI-1/GO/2/3 stages. We exclude 86 subjects with missing ApoE- 𝜖4 alleles because the ApoE- 𝜖4 allele is associated
with an increased risk of dementia occurrence.36 Moreover, we exclude one subject with missing education years and 189
subjects with invalid or no MRI data at baseline. The survival time is the time from baseline to the first dementia diagno-
sis. Subjects without dementia diagnosis during the follow-up period are treated as right-censored and the event time is
set as the last visit time. The final analysis dataset consists of 742 subjects and 3323 visits, with 268 dementia occurrences.
The outcomes ADAS-Cog 13, RAVLT-immediate, RAVLT-learning, MMSE, CDR-SB have 29, 15, 15, 8, 35 missing values,
respectively. Subjects have a mean follow-up period of 2.70 years, with SD being 2.47 years. The minimum and maximum
number of visits are 1 visit and 13 visits, with median being 4 visits.

3 METHODS

Suppose there are N subjects (denoted as i = 1, 2, … ,N) and J longitudinal outcomes (denoted as j = 1, 2, … , J), mea-
sured at time (ti1, ti2, … , tiKi), where Ki is the number of visits for subject i. Let Yij(tik) be the observed j-th longitudinal
outcome for subject i and visit k, for k = 1, … ,Ki, with a random noise 𝜖ijk. Let Ỹ ij(tik) denote the missing longitudinal
outcome and Iijk be the missing status indicator (1 if outcome Yij(tik) is missing and 0 otherwise) and we assume missing at
random (MAR). For subject i, We denote the baseline MRI data as mi(v) at voxel location v observed on a one-dimensional
grid V, which is the vector of voxels of interest with length V , where V = 9846 if hippocampal voxels are of clinical interest
and V = 642 after voxel-selection from the whole brain. The event time and censoring status for subject i are denoted as
Ti = min(T∗i ,Ci) and 𝛿i = I(T∗i ≤ Ci), respectively, where T∗i and Ci are the failure time and censoring time, respectively,
and I() is an indicator function.

3.1 MRI preprocess pipelines and voxel selection steps

The MRI data are T1-weighted structural MRI data, which undergone gradient warping, B1 non-uniformity correction,
and N3 correction. The MRI preprocess pipelines and voxel selection steps are detailed in Zou et al11 In brief, we register
the neck-skull-stripped MRI data to the JHU-MNI-ss (Eve) Template and the registered MRI data are standardized and
merged with the white matter parcellation map (WMPM Type II) of the Eve Template, with S = 1 843 303 voxels.

For the voxel selection steps, we independently fit Cox proportional hazards models for S voxels from the whole brain:
hi(t) = h0(t) exp(Z′i𝜶 + 𝛾sVoli,s), where Z′i is the covariate vector and Voli,s is the voxel volume for voxel s and subject
i. We adjust the p-value of the regression coefficient 𝛾s using the false discovery rate (FDR) and the p-value threshold
is set as 0.01.11 Similar ideas of voxel selection were adopted in recent literature. For example, Huang et al37 used the
logistic regression classifier to identify significant voxels, where they utilized the survival information (whether patients
converted to AD). Additionally, Petrone et al38 used the Jacobian determinant maps for feature selection and they also
classified patients into three groups and used the F-test to identify significant voxels.

3.2 Model

The longitudinal outcome Yij(tik) is assumed to be a noisy measurement of the latent process Xij(tik) that Yij(tik) = Xij(tik) +
𝜖ijk. The MRI data mi(v) is also assumed to have a random noise 𝜖mi(v). We denote subject i’s baseline covariate vector
as Z′i . We model the longitudinal outcome Yij(tik), baseline MRI data mi(v), and the survival process in the multivariate
functional mixed model with MRI (MFMM-MRI):

Yij(tik) = Xij(tik) + 𝜖ijk = 𝜇j(tik) + 𝛽j(Ui(tik) +Wij(tik)) + 𝜖ijk, (1)

mi(v) = 𝜇m(v) + 𝛽mumi(v) + fmi(v) + 𝜖mi(v), (2)

hi(t) = h0(t) exp(Z′i𝜶 + F(Xi, t) + g′mi𝜸m). (3)

In Model (1), we decompose the latent longitudinal process Xij(tik) into three components: the outcome-specific mean
function 𝜇j(tik), the shared random profile Ui(tik), and the subject-outcome specific random profile Wij(tik), with an
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F I G U R E 2 Directed acyclic graph showing the latent structural equations based on models (1) to (3)

association parameter 𝛽j. The mean function 𝜇j(t) is time dependent and an additive model can be adopted to incorpo-
rate the time-varying effects of some baseline covariates. The shared random profile Ui(t) quantifies the subject-specific
random deviation from the mean function and is shared across all longitudinal outcomes. The subject-outcome specific
random profile Wij(t) quantifies subject-outcome specific disease progression pattern and we assume random profiles
Ui(t), Wij(t), and random error 𝜖ijk are independent. Higher values of random profiles Ui(t) and Wij(t) imply worse cog-
nitive functions because we set 𝛽1 = 1 for the outcome ADAS-Cog 13 to achieve model identifiability. The association
parameter 𝛽j is the expected increase of the outcome j in one unit increase of the random profiles Ui(t) and Wij(t). The
random error is assumed to follow 𝜖ijk ∼ N(0, 𝜎2

j ).
In Model (2), the subscript m is to denote the MRI data. We decompose the MRI data into three components, similar

in nature with the JIVE approach,30 (1) mean function 𝜇m(v); (2) joint variation (the MRI component umi(v) shared with
the multivariate longitudinal outcomes via the latent functional principal component scores 𝜉il detailed in Section 3.3,
and being multiplied by a scale parameter 𝛽m); and (3) the individual variation (the MRI-specific varying pattern fmi(v)),
while the random noise 𝜖mi(v) ∼ N(0, 𝜎2

m). The scale parameter 𝛽m measures the strength of the correlation between the
MRI data and longitudinal outcomes (eg, 𝛽m = 0 indicates independence). We assume that the MRI components umi(v),
fmi(v), and random error 𝜖mi(v) are independent.

In the survival model (3), h0(t) is the baseline hazard function and𝜶 is the regression coefficient vector. The functional
form F(Xi, t) quantifies the contribution of the multivariate longitudinal outcomes towards the hazard function, whose
expressions are detailed in Section 3.3. The parameter vector 𝜸m is the contribution of the MRI-specific pattern g′mi to
the survival outcome, where g′mi is the projection of the individual variation fmi(v) to its eigenfunctions (see details in
Section 3.4). Figure 2 displays a directed acyclic graph showing the latent structural equations based on Models (1) to (3).

3.3 Functional components, functional forms and Bayesian inference

In the longitudinal Model (1), we approximate the mean function 𝜇j(t) using cubic B-spline functions with P degrees of
freedom, so that 𝜇j(t) ≈

∑P
j=1bp(t)Ajp, where bp(t) is the p-th cubic B-spline function at time t and Ajp is the regression

coefficient. We set P as 9 because the sensitivity analysis displayed in Supplementary Table S1 suggests that the model
assessment statistics are very close for different numbers of B-spline functions: P = (7, 8, 9, 10, 11). The random profiles
Ui(t) and Wij(t) are assumed to be two zero-mean stochastic processes with covariance functions C0(t, t′) and C1(t, t′),
respectively, where t and t′ are two different time points. By Mercer’s Theorem, we decompose covariance functions
C0(t, t′) =

∑∞
l=1d0l𝜙l(t)𝜙l(t′) and C1(t, t′) =

∑∞
l=1d1l𝜓l(t)𝜓l(t′), where d0l and d1l are non-increasing eigenvalues, and 𝜙l(t)

and𝜓l(t) are orthonormal eigenfunctions of Ui(t) and Wij(t), respectively, that is, ∫ 𝜙l(t)2dt = 1, and ∫ 𝜙l(t)𝜙l′ (t)dt = 0 for
l ≠ l′. By Karhunen-Loeve’s expansion, we express random profiles Ui(t) =

∑∞
l=1𝜉il𝜙l(t) and Wij(t) =

∑∞
l=1𝜁ijl𝜓l(t), where

𝜉il and 𝜁ijl are independent functional principal component (FPC) scores, which are assumed to follow 𝜉il ∼ N(0, d0l) and
𝜁ijl ∼ N(0, d1l).
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6 ZOU et al.

In the MRI Model (2), we approximate the mean function 𝜇m(v) using the sample mean �̂�m(v) because the dense sMRI
data provide good estimates of the mean function, and we smooth the mean function using cubic B-spline functions.
We decompose the shared MRI component as umi(v) =

∑∞
i=1𝜉il𝜙ml(v), and we approximate it as umi(v) ≈

∑L0
i=1𝜉il𝜙ml(v),

where 𝜙ml(v) is umi(v)’s orthonormal eigenfunctions and L0 is the number of FPC scores for random profile Ui(t) and its
specification is detailed in Section 3.4. The FPC scores 𝜉il are from the shared random profile Ui(t) in Model (1) and they
model the correlation between the MRI data and multivariate longitudinal outcomes. The MRI-specific varying pattern
fmi(v) is assumed to be a zero-mean stochastic process with the covariance function Cmm(v, v′), where v and v′ are two
different voxels. Similar as above, we decompose fmi(v) =

∑∞
l=1𝜉mil𝜓ml(v), where 𝜉mil is the MRI-specific FPC score, and

𝜓ml(v) is fmi(v)’s orthonormal eigenfunctions, and we assume FPC scores 𝜉mil ∼ N(0, dml), where dml is the non-increasing
eigenvalue of the MRI-specific FPC score 𝜉mil. We approximate the MRI-specific varying pattern as fmi(v) ≈

∑Lm
l=1𝜉mil𝜓ml(v),

where the number of eigenfunctions Lm is determined by the proportion of variance explained (PVE) criteria and is
detailed in Supplementary Section 2.39

We project the MRI data mi(v) onto Lm dimensional orthonormal eigenfunctions 𝜓mj(v), for j = 1, … ,Lm. We
obtain mij ≈ 𝜇mj + 𝛽m

∑L0
l=1𝜉ilflj + 𝜉mil + 𝜖mij, where mij = ∫v mi(v)𝜓mj(v)dv, 𝜇mj = ∫v 𝜇m(v)𝜓mj(v)dv, flj = ∫v 𝜙ml(v)𝜓mj(v)dv,

and 𝜖mij = ∫v 𝜖mi(v)𝜓mj(v)dv. We denote the MRI-specific pattern as g′mi = (𝜉mi1, … , 𝜉miLm), which are used to model the
hazard function in Model (3). We do not include FPC scores 𝜉il in the MRI-specific pattern g′mi because the function
form F(Xi, t) contains information of the FPC scores 𝜉il and is detailed in the following context. By projection, we trans-
form the high-dimensional MRI data (V voxels) to low-dimensional latent variables (Lm FPC scores), which facilitates
computational efficiency while retaining most MRI-specific variation.

To investigate the association between multivariate longitudinal outcomes and survival process, we propose two
functional forms of F(Xi, t): the random-effects model and instantaneous model.

Model 1 (random-effects model), F(Xi, t) =
∑∞

l=1𝛾0l𝜉il +
∑J

j=1
∑∞

l=1𝛾1jl𝜁ijl. The association is quantified via the shared
latent features (FPC scores) 𝜉il and subject-outcome specific latent features 𝜁ijl. We estimate the number of FPC scores
in Section 3.4 and we approximate F(Xi, t) ≈

∑L0
l=1𝛾0l𝜉il +

∑J
j=1

∑L1
l=1𝛾1jl𝜁ijl, where L0 is the number of FPC scores for the

shared random profile Ui(t) and L1 the number of FPC scores for the subject-specific random profile Wij(t). We set 𝜸0 =
(𝛾01, … , 𝛾0L0) and 𝜸1j = (𝛾1j1, … , 𝛾1jL1).

Model 2 (instantaneous model), F(Xi, t) = 𝛾0Ui(t) +
∑J

j=1𝛾1jWij(t), which quantifies the association via the current val-
ues of the shared random profile Ui(t) and subject-outcome specific random profile Wij(t) at time t. We set 𝜸0 = 𝛾0 and
𝜸1j = 𝛾1j.

These two functional forms are widely used to investigate the association between the longitudinal and survival pro-
cess for various types of diseases (eg, cardiovascular diseases,13 primary biliary cirrhosis,17 and Alzheimer’s Disease10).
For Model 1 (random-effects model), because the eigenfunctions 𝜙l(t) and 𝜓l(t) are forced to be positive for easy interpre-
tation, higher values of the shared FPC scores 𝜉il and 𝜁ijl suggest worse cognitive behavior and faster dementia conversion.
For Model 2 (instantaneous model), higher values of the shared random profile Ui(t) and outcome-specific progression
patterns Wij(t) are associated with a worse cognitive behavior and faster dementia conversion.

We denote the parameter space as 𝚯 = (A, 𝜷,d0,d1,𝝈,𝜶, 𝜸0, 𝜸1, 𝜸m), where A = (A1, … ,Aj, … ,AJ), Aj =
(Aj1, … ,AjP), 𝜷 = (𝛽2, … , 𝛽J), d0 = (d01, … , d0L0), d1 = (d11, … , d1L1), and 𝝈 = (𝜎1, … , 𝜎J). The log-likelihood is
expressed as:

l(Y|𝚯) =
N∑

i=1
log(Llong

i Lsurv
i p(𝝃i, 𝜻 i|d0,d1)p(𝝃mi|dm)), (4)

where Llong
i =

J∏

j=1

Ki∏

k=1
p(Yij(tik)|𝜉il, 𝜁ijl)1−Iijk p(Ỹ ij(tik)|𝜉il, 𝜁ijl)Iijk ,

and Lsurv
i = hi(Ti|𝝃i, 𝜻 i, gmi)𝛿i Si(Ti|𝝃i, 𝜻 i, gmi). (5)

Equation (4) does not include the likelihood of the MRI data because the MRI data mi(v) is projected onto eigenfunc-
tions𝜓ml(v) and the MRI-specific FPC scores 𝜉mil are estimated using their expectations detailed in Section 3.4. We denote
the FPC score vector 𝝃i = (𝜉i1, … , 𝜉iL0), 𝜻 i = (𝜻 i1, … , 𝜻 ij, … , 𝜻 iJ), 𝜻 ij = (𝜁ij1, … , 𝜁ijL1), and 𝝃mi = (𝜉mi1, … , 𝜉miLm). We
denote Si(t) as the survival probability at time t for subject i. We use a piecewise constant function to model the baseline
hazard function h0(t).40,41 We use the Gaussian quadrature to approximate the survival function Si(t), whose formula-
tion is detailed in Supplementary Section 3. The choice of priors and derivation of posterior distribution are detailed
as follows:

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9683 by U
niversity O

f Southern C
alifornia, W

iley O
nline L

ibrary on [27/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ZOU et al. 7

A, 𝜷,𝜶, 𝜸0, 𝜸1, 𝜸m ∼ N(0, 102),
d0,d1,𝝈 ∼ Inv_Gamma(0.1, 0.1),

p(𝚯|Y) ∝
N∏

i=1
Llong

i Lsurv
i p(𝝃i, 𝜻 i|d0,d1)p(𝝃mi|dm)p(𝚯),

where Inv_Gamma is the inverse gamma distribution and p(𝚯) is the prior distribution of the parameter space𝚯.
We adopt the Markov Chain Monte Carlo (MCMC) method to obtain posterior samples from the likelihood based on

No-U-Turn Sampling (NUTS) algorithm implemented in Stan.42 The missing outcomes Ỹ ij(tik) are treated as unknown
parameters and are imputed in the MCMC procedure. The scale reduction statistic R̂ is used to assess the convergence of
the model, where R̂ < 1.1 indicates satisfied convergence.42 For the real data analysis and simulation study, we use two
chains with 2000 warm-up iterations and 1000 post burn-in iterations for each MCMC chain. From a total of 2000 posterior
samples, we obtain the estimated mean, standard deviation, and 95% credible intervals. To facilitate easy implementation,
the Stan code is given in Supplementary Section 9. Refer to https://github.com/zouhaotian/MFMM_MRI for detailed R
codes in real data analysis and simulation study.

3.4 Estimation of functional components and model assessment criteria

Let Cjj′ (t, t′) be the covariance function between the latent processes Xij(t) and Xij′ (t′). We use the multivariate fast covari-
ance estimation (mFACE) method to estimate the covariance function Cjj′ (t, t′) on a refined grid S, where S is an equally
spaced time grid.43 In Supplementary Section 1, we provide the detailed estimation procedure to obtain the estimated
covariance functions ̂C0(t, t′) and ̂C1(t, t′). We use the eigendecomposition to obtain the estimated eigenfunctions �̂�l(t)
and �̂� l(t) and eigenvalues ̂d0l and ̂d1l. Using the PVE criteria, we identify the number of FPC scores as L0 for the shared
random profile Ui(t), and L1 for the subject-outcome specific random profile Wij(t). And we approximate the random
profiles Ui(t) ≈

∑L0
l=1𝜉il𝜙l(t) and Wij(t) ≈

∑L1
l=1𝜁ijl𝜓l(t).

We denote the covariance function between the longitudinal outcome Yij(t) and MRI data mi(v) as Cjm(t, v) =
cov(Yij(t),mi(v)). We denote the covariance function between the MRI data mi(v) and mi(v′) as Cmm(v, v′) =
cov(mi(v),mi(v′)). We express the covariance functions using the following equations (refer to Supplementary Section 2
for the detailed derivation):

Cjm(t, v) = 𝛽j𝛽m

∞∑

i=1
d0l𝜙l(t)𝜙ml(v), (6)

Cmm(v, v′) = 𝛽2
m

∞∑

l=1
d0l𝜙ml(v)𝜙ml(v′) +

∞∑

l=1
dml𝜓ml(v)𝜓ml(v′) + I(v = v′)𝜎2

m. (7)

We denote the demeaned MRI data as: m∗
i (v) = mi(v) − �̂�m(v). From the multivariate longitudinal model (1), we obtain

the number of FPC scores L0, estimated FPC scores 𝜉il, and the variances of FPCs ̂d0l, for l = 1, … ,L0. More explicitly, we
denote the FPC score vector ̂𝝃i = (𝜉i1, … , 𝜉iL0

), and D̂0 is a diagonal matrix with its diagonal elements being the eigen-
value ̂d0l. To estimate eigenfunctions 𝜙ml(v), 𝜓ml(v), the scale parameter 𝛽m, and the standard deviation 𝜎m, we adopt an
iterative search procedure detailed in Supplementary Section 2. To facilitate easy implementation, we display an algorithm
graph 1.

After we obtain the estimated eigenfunctions �̂�ml(v) and �̂�ml(v), we use the Riemann’s sum to approximate mij, so
m̂ij ≈ ∫V mi(v)�̂�mj(v)dv, �̂�mj ≈ ∫V �̂�m(v)�̂�mj(v)dv, ̂f lj ≈ ∫V �̂�ml(v)�̂�mj(v)dv. Thus, we estimate the FPC score 𝜉mij using its
expectation: E(𝜉mij) = m̂ij − (�̂�mj + 𝛽m

∑L0
l=1𝜉il ̂f lj) because E(𝜖mij) = E(∫v 𝜖mi(v)�̂�mj(v)dv) = 0, and the MRI-specific pattern

g′mi = (𝜉mi1, … , 𝜉miLm). The eigenvalue dml is estimated based on the variance of the FPC scores 𝜉mil.
We assess the model fitting performance using empirical Akaike information criterion (EAIC), empirical Bayesian

information criterion (EBIC), leave-one-out information criterion (LOOIC), and widely applicable information criterion
(WAIC).44,45 Lower values of the above statistics suggest a better model fitting performance. Specifically, we first compute
the posterior mean deviation D(𝚯) = −2E(

∑N
i=1li(𝚯)) using Monte Carlo approximation: D(𝚯) ≈ −2∕Q

∑Q
q=1

∑N
i=1li(𝚯(q)),

where li(𝚯) is the log-likelihood for subject i, Q is the number of posterior samples, and the superscript (q) denotes the
q-th posterior sample. The EAIC and EBIC statistics are computed as: EAIC = D(𝚯) + 2p, and EBIC = D(𝚯) + p log N,
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8 ZOU et al.

Algorithm 1. Estimation algorithm

Require: The estimated FPC scores 𝜉il and variance ̂d0l via mFACE method.
Input: 𝜉il, ̂d0l, and MRI data mi(v).
Output: Eigenfunctions 𝜙ml(v), 𝜓ml(v), scale parameter 𝛽m, and SD 𝜎m.

1: Initialization Smooth ̂C∗
M(v, v

′) = cov(mi(v),mi(v′)). Estimate �̂�m = 1/V
∑V

v=1 C∗
M(v, v) − ̂C∗

M(v, v). Eigendecomposi-
tion on ̂C∗

M(v, v
′) for L0 eigenvalues ̂d∗0l and eigenfunctions 𝜙(0)ml(v).

2: Initialization Regress ̂d∗0l with ̂d0l for 𝛽2
m. Regress ̂Cjm(t, v) = cov(Yij(t),mi(v))with 𝛽j

∑L0
l=1

̂d0l�̂�l(t)𝜙(0)ml(v) to determine
sign of 𝛽(0)m .

3: while |𝛽(t+1)
m − 𝛽(t)m | ≥ 𝜖 = 1e − 5 do

4: Compute M∗
1 (v) = M∗(v) − 𝛽(0)m

̂𝝃Φ(0)m . Smooth ̂C∗
M1(v, v

′) = cov(M∗
1 (v),M

∗
1 (v

′)). Eigendecomposition on ̂C∗
M1(v, v

′)
for first Lm (determined by PVE) eigenfunctions 𝜓 (1)ml (v) and eigenvalues d(1)ml .

5: Smooth ̂C∗
M2(v, v

′) ≈ ̂C∗
M(v, v

′) −
∑Lm

l=1 d(1)ml𝜓
(1)
ml (v)𝜓

(1)
ml (v

′). Eigendecomposition on ̂C∗
M2(v, v

′) for first L0 eigenfunc-
tions 𝜙(1)ml(v) and eigenvalues ̂d∗0l. Estimate 𝛽(1)m by regressing ̂d∗0l and ̂d0l and taking squared root.

6: end while
7: Finalize Estimate SD and 95% CI for 𝛽m and SD 𝜎m from B bootstrap replications.

where p is the number of parameters in the parameter space 𝚯. The LOOIC and WAIC statistics are computed based on
the log pointwise predictive density implemented in the loo package.45

3.5 Dynamic prediction

Suppose there is a new subject B with multivariate longitudinal outcomes observed at KB visits and the baseline MRI data.
For a future time T′ (T′ > T), we predict subject B’s longitudinal outcomes and the event-free probability at time T′. Let
Y(T)B = (YBj(tBk))j=1,… ,J,k=1,… ,KB be all longitudinal outcomes until time T, where YBj(tBk) is j-th longitudinal outcome for
subject B at visit k. We denote the FPC score vector for longitudinal outcomes as 𝝃B and 𝜻B for subject B. We denote the
covariate vector as Z′B and the FPC score vector for the MRI specific-varying pattern as 𝝃mB. Let g′mB = (𝜉mB1, … , 𝜉mBLm)
denote the MRI-specific pattern as in Section 3.4. We adopt the MCMC method to obtain samples from the posterior
distribution of the score vectors 𝝃B, 𝜻B, and 𝝃mB as in Equation (8). We use two MCMC chains, each of which consists of
2000 warmup iterations and 1000 post burn-in iterations, with a total of Q = 2000 posterior samples.

P(𝝃B, 𝜻B, 𝝃mB|Y
(T)
B ,T, 𝛿B = 0, ̂𝚯) ∝

J∏

j=1

KB∏

k=1
p(YBj(tBk)|𝝃B, 𝜻B,

̂𝚯)SB(T|Z′B, 𝝃B, 𝜻B, gmB,
̂𝚯)p(𝝃B, 𝜻B, 𝝃mB| ̂𝚯), (8)

where ̂𝚯 is the estimated mean of𝚯. Equation (8) does not include the likelihood of the MRI data because the MRI-specific
FPC scores are estimated via projection detailed in Section 3.4.

We compute the predicted longitudinal outcomes and survival probability at time T′ from Q posterior samples as in
Equations (9) and (10), respectively.

E(YBj(T′)|𝝃(q)B , 𝜻
(q)
B ,

̂𝚯) ≈ �̂�j(T′) + 𝛽 j

( L0∑

l=1
𝜉
(q)
Bl �̂�l(T′) +

L1∑

l=1
𝜁
(q)
Bjl �̂� l(T′)

)

, (9)

SB(T′|T,Z′B, 𝝃
(q)
B , 𝜻

(q)
B , g(q)mB,

̂𝚯) ≈ SB(T′|Z′B, 𝝃
(q)
B , 𝜻

(q)
B , g(q)mB,

̂𝚯)∕SB(T|Z′B, 𝝃
(q)
B , 𝜻

(q)
B , g(q)mB,

̂𝚯), (10)

where the superscript (q) denotes the q-th posterior sample. We compute the mean of predicted longitudinal outcomes
and event-free survival probability based on Q predicted values.

To assess the model predictive performance, we use discrimination (how well the model discriminates subjects
with or without event) and calibration measurements (how well the model agrees with the observed survival status).
Specifically, the area under the time-dependent receiver operating characteristic curve (AUC) is adopted to measure
the discrimination, based on the trapezoidal integration of the time-dependent sensitivity and specificity.46 For the
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ZOU et al. 9

calibration measurement, we use the Brier score (BS) based on the average of the weighted squared differences between
the predicted and observed survival status.47 Higher values of AUC and lower values of BS suggest a better predictive per-
formance. For the illustration purpose, we integrate the estimated AUC and BS values over a dense prediction window
𝛿t given a landmark time T and we obtain the integrated AUC (iAUC) and integrated BS (iBS) using the Simpson’s Rule.

4 REAL DATA APPLICATION

For subject i at visit k, let Yi1(tik), … , Yi5(tik) denote the observed ADAS-Cog 13, RAVLT-immediate, RAVLT-learning,
MMSE, and CDR-SB scores after Box-Cox transformation (for normality). We determine the number of FPC scores of the
shared random profile Ui(t) and subject-outcome random profile Wij(t) using 95% PVE threshold and we obtain L0 = 2
and L1 = 1. We use a piecewise constant function to model the baseline hazard function with knots at 4, 6, and 8 years. The
knots are so selected because the estimated cumulative hazard function displayed in Supplementary Figure S1 suggests
that its slope is slightly different among 0 to 4 years, 4 to 6 years, 6 to 8 years, and 8 years later. We explored other knot
selections and obtained very similar results (not shown). The covariate vector Z′i = (Agei, Sexi,Educationi,ApoEi), where
we set Male as the reference sex, education as the number of education years, and ApoE as the number of ApoE- 𝜖4 alleles.

We compare the model fitting performance for the three sets of models: (1) MFMM-whole: the MRI data is from
whole-brain voxels after voxel selection, with V = 642 voxels and Lm = 10 using 95% PVE; (2) MFMM-hippo: the MRI
data is from hippocampal voxels only, with V = 9846 voxels and Lm = 13 using 95% PVE; (3) MFMM: the model is without
MRI data. The reason of comparing MFMM-hippo vs. MFMM is that hippocampal volume shrinkage is an important risk
factor of dementia onset.24 Similarly, we compare two functional forms of F(Xi, t) as in Section 3.3, that is, Model 1 (ran-
dom effects model) and Model 2 (instantaneous model), rendering a total of six models for comparison. We also compare
the MFMM-MRI model with other four candidate models: Model 3 - 2S (a two-stage sequential estimation approach based
on Model 2); Model 3 - MJM-MRI (the multivariate joint model with MRI data,11 with details available in Supplementary
Section 5); Model 3 - bCox (the Cox model with baseline longitudinal outcomes); Model 3 - NM (the non-mixed functional
model that the longitudinal model is Yij(tik) = 𝜇j(tik) + 𝜖ijk and the Cox model includes baseline covariates). We compare
MFMM-MRI with four candidate models to show the advantages of the joint modelling vs. the two-stage approach, mod-
eling nonlinear longitudinal outcomes and MRI data using functional mixed models, modelling longitudinal trajectories
in the survival model, and modelling the random component functions in the longitudinal model.

Table 1 compares model fitting performance of candidate models. Comparing the three sets of models in Model 1,
Model 1 with whole-brain voxels (M1-whole) has the smallest LOOIC and WAIC statistics, suggesting a better model

T A B L E 1 Model comparison statistics for candidate models: Model 1-whole (random-effects model with whole-brain voxels); Model
1-hippo (random-effects model with hippocampal voxels); Model 1 (random-effects model without MRI data); Model 2 (instantaneous
model); Model 3 - 2S (two-stage approach); Model 3 - MJM-MRI (multivariate joint model with MRI data); Model 3 - bCox (the Cox model
with baseline longitudinal outcomes); Model 3 - NM (non-mixed functional model)

Model EAIC EBIC LOOIC WAIC Time (h)

Model 1-whole 19 917 20 295 23 284 22 570 3.3

Model 1-hippo 19 950 20 342 23 334 22 618 2.6

Model 1 19 915 20 247 23 314 22 583 2.5

Model 2-whole 19 887 20 260 23 283 22 560 5.9

Model 2-hippo 19 922 20 309 23 277 22 596 8.0

Model 2 19 892 20 219 23 303 22 584 6.7

Model 3 - 2S 20 998 21 325 24 311 23 662 5.0

Model 3 - MJM-MRI 26 645 27 019 28 104 28 005 11.4

Model 3 - bCox 20 011 20 333 23 340 22 661 5.8

Model 3 - NM 40 317 40 585 40 460 40 476 1.0

Note: The computation is run a four-core 2.50 GHz Intel processor.
Abbreviations: EAIC, empirical akaike information criterion; EBIC, empirical Bayesian information criterion; LOOIC, leave-one-out information criterion;
WAIC, widely application information criterion.
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10 ZOU et al.

performance. Model 1 with hippocampal voxels (M1-hippo) and without MRI data (M1) show similar model assessment
statistics. Table 1 suggests that Model 2 with whole-brain voxels (M2-whole) has a better performance (smaller EAIC and
WAIC and similar LOOIC) as compared with Model 2 with hippocampal voxels (M2-hippo) and without MRI data (M2).
Since EBIC statistics give a large penalty to the number of parameters, Model 2 with whole-brain voxels (M2-whole) show
slightly larger EBIC statistics as compared to Model 2. Model 2 with whole-brain voxels (M2-whole) has smaller assess-
ment statistics as compared with M1-whole, suggesting that M2-whole has the best performance among all candidate
models. Additionally, Model 2 with whole-brain voxels (M2-whole) show substantially better performance as compared
to Model 3 - 2S, Model 3 - MJM-MRI, Model 3 - bCox, and Model 3 - NM, indicating the advantages of joint modelling vs.
the two-stage approach, non-parametric mixed functional models vs parametric linear models, modelling longitudinal
trajectories in the survival model, and modelling random component functions in the longitudinal model. Thus, we select
Model 2 with whole-brain voxels (M2-whole) as the final model. Specifically in the survival model (3), the covariate vector
Z′i = (Agei, Sexi,Educationi,ApoEi), the functional form F(Xi, t) = 𝛾0Ui(t) +

∑J=5
j=1 𝛾1jWij(t), and the MRI-specific pattern

g′mi = (𝜉mi1, … , 𝜉mi10), where Ui(t) is the shared random profile, Wij(t) is the subject-outcome specific random profile, and
𝜉mil is the MRI-specific FPC score, for l = 1, … ,Lm = 10.

Table 2 summarizes the mean, SE, and 95% credible intervals from Model 2 with whole-brain voxels. For the mul-
tivariate longitudinal outcomes, the estimated association parameters 𝛽2 to 𝛽5 are all significant, suggesting that one
unit increase of the shared random profile Ui(t) and subject-outcome specific random profile Wij(t) are associated with
0.540 unit decrease in RAVLT-immediate (95% CI: [− 0.567, − 0.514]), 0.600 unit decrease in RAVLT-learning (95% CI:
[− 0.636, − 0.563]), 0.033 unit decrease in MMSE (95% CI: [− 0.035, − 0.031]), and 0.159 unit increase in CDR-SB (95%
CI: [0.150, 0.169]), after their Box-Cox transformation (refer to Supplementary Table S2 for power parameters used in
Box-Cox transformation). Results suggest that higher values of ADAS-Cog 13 (worse cognitive functions) are associated
with lower values of RAVLT-immediate, RAVLT-learning, MMSE, and higher CDR-SB scores (worse functional activi-
ties and memory functions). The estimated variances of FPC scores, mean functions, and eigenfunctions are displayed
in Supplementary Table S2 and Figure S2. For the MRI components, the estimated scale parameter 𝛽m is − 0.053 (95%
bootstrap CI: [− 0.072, − 0.035] based on 120 bootstrap replications), suggesting that one unit increase in umi(v) (the MRI
component shared with longitudinal outcomes) is associated with 0.053 unit decrease in the volume for voxel v. Results
suggest that higher values of FPC scores 𝜉il (worse cognitive functions) are associated with a greater decrease of the voxel
volumes in MRI data. Figure 3 displays the decomposition of the MRI data for a randomly selected subject in the brain
heat map (in sagittal view) using BrainNet Viewer.48

For the survival outcome as dementia onset, results suggest that one additional ApoE- 𝜖4 allele is associated with a
27.9% (95% CI: [0.078, 0.472]) increase in log hazard. The estimated association parameter �̂�0 is significant, suggesting
that one unit increase of the shared random profile Ui(t) (worse cognitive behaviors) is associated with a 60.7% (95% CI:
[0.522, 0.702]) increase in log hazard (higher risk of dementia onset). The estimated association parameters �̂�11, �̂�12, and
�̂�15 are marginally significant, suggesting higher values of ADAS-Cog 13, lower values of RAVLT-immediate, and higher
values of CDR-SB are associated with a higher risk of dementia onset. Most of the estimated association parameters �̂�ml, for
l = 1, … , 10, are negative and statistically significant, suggesting that voxel volume shrinkage in MRI data is associated
with a higher risk of dementia onset. We use the likelihood ratio test (LRT) to test the hypothesis that H0 ∶ 𝛾m1 = · · · =

𝛾m10 = 0 vs. H1 ∶ otherwise.49 The test statistic T = 39.89
d

−−−−−→ 𝜒
2
10, and p-value is less than 0.001, providing sufficient

evidence of the significant association between the MRI-specific varying pattern and dementia onset.
We randomly split the dataset into the training and testing set with sample sizes being 556 and 186, respectively (3:1

ratio). We repeat the dynamic prediction for 100 times and compute the mean of iAUC and iBS. Table 3 compares the
predictive performance for all candidate models using iAUC and iBS measurements at landmark times 2, 2.5, 3, 3.5, and
4 years. The prediction window 𝛿t = (0.5, 0.51, … , 1.5). Comparing the three sets of models in Model 1, results suggest
that Model 1 with whole-brain voxels (M1-whole) shows highest iAUC and similar iBS values as compared with Model 1
with hippocampal voxels (M1-hippo) and without MRI data (M1), for all landmark times. Results also suggest that Model
2 with whole-brain voxels (M2-whole) has the best predictive performance as compared with Model 2 with hippocampal
voxels (M2-hippo) and without MRI data (M2), and Model 1 with whole-brain voxels (M1-whole). Comparing Model 2
with whole-brain voxels (M2-whole) with the other four candidate models (Model 3 - 2S, Model 3 - MJM-MRI, Model
3 - bCox, and Model 3 - NM), the results suggest that Model 2 has higher iAUC values for most landmark times. Thus,
the proposed model show improved predictive performance as compared to the models using the two-stage approach,
parametric linear mixed models, without longitudinal trajectories in the survival model, and without random component
functions in the longitudinal model. In summary, Model 2 with whole-brain voxels (M2-whole) has the best fitting and
predictive performance among all candidate models.
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ZOU et al. 11

T A B L E 2 Mean, standard error, and 95% credible intervals for parameters from model 2 (instantaneous model) with whole-brain voxels
(M2-whole)

Mean SE 2.5% 97.5%

Longitudinal outcomes and MRI data

𝛽2: RAVLT-immediate − 0.540 0.014 − 0.567 − 0.514

𝛽3: RAVLT-learning − 0.600 0.019 − 0.636 − 0.563

𝛽4: MMSE − 0.033 0.001 − 0.035 − 0.031

𝛽5: CDR-SB 0.159 0.005 0.150 0.169

𝜎1: ADAS-Cog 13 1.065 0.016 1.035 1.096

𝜎2: RAVLT-immediate 0.612 0.008 0.596 0.629

𝜎3: RAVLT-learning 1.334 0.018 1.298 1.370

𝜎4: MMSE 0.059 0.001 0.057 0.060

𝜎5: CDR-SB 0.263 0.004 0.256 0.271

𝛽m − 0.053 0.009 − 0.072 − 0.035

𝜎m 0.404 0.007 0.392 0.417

Survival outcome

Age − 0.022 0.009 − 0.040 − 0.004

Female sex 0.134 0.145 − 0.148 0.423

Education years − 0.006 0.024 − 0.055 0.041

ApoE- 𝜖4 alleles 0.279 0.100 0.078 0.472

𝛾0 0.607 0.045 0.522 0.702

𝛾11: ADAS-Cog 13 0.169 0.099 − 0.012 0.364

𝛾12: RAVLT-immediate 0.164 0.092 − 0.010 0.336

𝛾13: RAVLT-learning 0.006 0.094 − 0.174 0.200

𝛾14: MMSE − 0.132 0.081 − 0.288 0.029

𝛾15: CDR-SB 0.279 0.083 0.120 0.446

𝛾m1 − 0.752 0.230 − 1.199 − 0.304

𝛾m2 − 1.194 0.306 − 1.792 − 0.594

𝛾m3 − 0.358 0.419 − 1.155 0.486

𝛾m4 0.922 0.593 − 0.229 2.046

𝛾m5 − 1.765 0.601 − 2.952 − 0.573

𝛾m6 − 1.387 0.913 − 3.228 0.495

𝛾m7 1.739 0.954 − 0.108 3.572

𝛾m8 − 3.129 1.060 − 5.237 − 1.086

𝛾m9 − 0.167 1.416 − 2.985 2.567

𝛾m10 0.707 1.452 − 2.174 3.540

Note: The SE and 95% CI for the scale parameter 𝛽m and standard deviation 𝜎m is derived using bootstrap method as in Section 3.4. The parameters 𝛾0 and 𝛾1j

are the association parameters for the shared random profile Ui(t) and subject-outcome specific random profile Wij(t) with the risk of dementia onset,
respectively, for j = 1, … , J = 5. The parameter 𝛾ml is the association parameter between the MRI-specific varying pattern 𝜉mil and the risk of dementia onset,
for l = 1, … ,Lm = 10.
Abbreviations: ADAS-Cog, the Alzheimer’s disease assessment scale - cognitive subscale; CDR-SB, clinical dementia rating scale - sum of boxes; MMSE,
mini-mental state examination; RAVLT, Rey auditory verbal learning test.
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12 ZOU et al.

F I G U R E 3 The brain heat map (in sagittal view) that expresses the decomposition of the MRI data for a randomly selected subject i as:
mi(v) ≈ �̂�m(v) + 𝛽mûmi(v) + ̂f mi(v). The four plots (from top left in clockwise order) represent the observed voxel volumes mi(v), the estimated
mean function �̂�m(v), the MRI-specific varying pattern ̂f mi(v), and the MRI component shared with longitudinal outcomes ûmi(v). The colored
dots are the voxels, with colors being volumes of voxels. The labels for regions of interest (ROI) are displayed as numbers (refer to
Supplementary Tables S10 and S11). The voxel sizes are proportional to the number of voxels in each ROI

Figure 4 displays the prediction of neurological scores and probability of remaining stable MCI for a randomly selected
subject A at the landmark times of 2 and 3 years, based on Model 2 with whole-brain voxels (M2-whole). Figure 4 suggests
that subject A has a relatively mild disease status (low ADAS-Cog 13 scores before 2 years) and good functional activities
(low CDR-SB scores before 2 years). The predicted survival probabilities decrease slowly, with a high chance of remaining
MCI at the censoring time (7.98 years).

5 SIMULATION STUDY

5.1 Simulation settings

A simulation study is conducted to validate the proposed estimation and prediction method. The true values of parameters
are close to the estimates from the real data analysis based on Model 2 (the instantaneous model) with whole-brain voxels.
To check the robustness of the method, we explore three simulation scenarios detailed in Supplementary Section 7. For
simulation Scenario 1 (we simulate data from Model 2), we consider four simulation settings with different sample sizes
and event rates (ER) detailed in Supplementary Section 7. In the following context, we only display the results from
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ZOU et al. 13

T A B L E 3 Predictive performance for candidate models at landmark times 2, 2.5, 3, 3.5, and 4 years

M1-whole M1-hippo M1 M2-whole M2-hippo M2

Landmark (T) iAUC iBS iAUC iBS iAUC iBS iAUC iBS iAUC iBS iAUC iBS

T = 2 0.879 0.091 0.876 0.090 0.877 0.088 0.884 0.087 0.875 0.090 0.873 0.088

T = 2.5 0.886 0.087 0.866 0.083 0.872 0.083 0.899 0.081 0.867 0.081 0.871 0.079

T = 3 0.854 0.102 0.835 0.096 0.840 0.101 0.866 0.095 0.834 0.098 0.834 0.096

T = 3.5 0.783 0.095 0.765 0.089 0.751 0.096 0.802 0.089 0.769 0.090 0.767 0.094

T = 4 0.801 0.084 0.780 0.079 0.774 0.084 0.834 0.077 0.811 0.079 0.804 0.079

M3 - 2S M3 - MJM-MRI M3 - bCox M3 - NM

Landmark (T) iAUC iBS iAUC iBS iAUC iBS iAUC iBS

T = 2 0.850 0.097 0.808 0.116 0.864 0.087 0.696 0.103

T = 2.5 0.843 0.080 0.838 0.100 0.810 0.086 0.675 0.092

T = 3 0.816 0.093 0.829 0.120 0.798 0.096 0.681 0.107

T = 3.5 0.777 0.088 0.817 0.110 0.757 0.087 0.564 0.102

T = 4 0.798 0.083 0.821 0.100 0.760 0.083 0.577 0.097

Abbreviations: iAUC, integrated area under receiver operating characteristic curve; iBS, integrated Brier score; M1, Model 1, random-effects model; M2, Model
2, instantaneous model; M3 - 2S, (two-stage sequential estimation approach); M3 - MJM-MRI, (multivariate joint model with MRI data; M3 - bCox, (the Cox
model with baseline longitudinal outcomes); M3 - NM, (non-mixed functional model).

simulation Scenario 1 and Setting 1 (N = 800 for training set, N = 300 for testing set, h0(t) = exp(−1.5)). The results for
Settings 2 to 4 are displayed in Supplementary Tables S3, S4, and S5. The results for Scenarios 2 and 3 are displayed in
Supplementary Tables S8 and S9. We also compare the model with four candidate models as in Section 4 and detailed in
Supplementary Section 7 to show the strengths of the joint modelling vs the two-stage approach, modeling longitudinal
outcomes and MRI data using functional mixed models, modelling longitudinal trajectories in the survival model, and
modelling the random component functions in the longitudinal model. For the four candidate models, we simulate data
from Scenario 1 and Setting 1 and estimate the parameters using the candidate models. The results are summarized in
Supplementary Tables S6 and S7.

For subject i (i = 1, … ,N), we simulate J = 3 longitudinal outcomes from Model (1) on a sparse time grid Si =
[0, ti, ti + 0.1, … , ti + 0.9] so the time grid has 11 points for each outcome, where ti is sampled from a multinomial
distribution with equal probabilities on [0.01, 0.02, … , 0.1]. The true mean functions 𝜇j(t) are equal to the esti-
mated mean functions from real data analysis. The FPC scores are simulated from 𝜉il ∼ N(0, d0l) and 𝜁ijl ∼ N(0, d1l),
where d0 = (2, 1) and d11 = 1, with L0 = 2 and L1 = 1. The eigenfunctions 𝜙1(t) =

√
2 sin(𝜋t), 𝜙2(t) =

√
2 cos(𝜋t), 𝜓1(t) =√

2 cos(2𝜋t). We set the association parameter 𝜷 = (𝛽2, 𝛽3) = (−0.55,−0.60) and the standard deviation for random errors
𝝈 = (1.10, 0.60, 1.36). We simulate missing outcomes with the missingness mechanism being missing at random (MAR),
and the missing probability logit(pijk) = 0.5(tik − 5), and Iijk ∼ Ber(pijk), thus achieving around 2.5% missing rate for all
three longitudinal outcomes because we assume tik is the only predictor for the longitudinal outcomes, where Ber is the
Bernoulli distribution.

We simulate the baseline MRI data mi(v) from Model (2) observed on a dense voxel grid V = (1∕V , 2∕V , … , 1),
where V = 642 voxels, and the scale parameter 𝛽m = −0.05. The FPC scores for the MRI-specific varying pattern 𝜉mil are
simulated from 𝜉mil ∼ N(0, dml), for l = 1, … ,Lm = 5, and the variance dm = (0.10, 0.07, 0.05, 0.03, 0.01). The eigenfunc-
tions 𝜙ml(v) =

√
2 sin((2l − 1)𝜋v∕2), for l = 1, … ,L0 = 2, and 𝜓ml(v) =

√
2 cos(𝜋(2l − 1)v∕2), for l = 1, … ,Lm = 5. We

simulate the random error from 𝜖mi(v) ∼ N(0, 𝜎2
m), where the standard deviation 𝜎m = 0.4.

To simulate the survival outcome from Model (3), we set the baseline hazard function h0(t) = exp(−1.5), Zi ∼
Binom(2, 0.4), the regression coefficient 𝛼 = 0.3, the association parameters 𝛾0 = 0.6, 𝜸1 = (0.35, 0.3, 0.1), and 𝜸m =
(−0.6,−1.1,−0.5, 0.7,−1.8), where Binom is the Binomial distribution. The survival probability Si is simulated from
U(0, 1) and we approximate the event time T∗i using the bisection method by solving the equation log(Si) =
−Hi(T∗i ). The censoring time is generated from Ci ∼ U(0, 1.6). After censoring, we have around 6.5 observations
per subject.
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F I G U R E 4 Prediction of ADAS-Cog 13, RAVLT-immediate, RAVLT-learning, MMSE, CDR-SB scores, and the probability of remaining
stable MCI for a new subject A given the landmark times at 2 years (rows 1 and 3) and 3 years (rows 2 and 4). The dotted circles are observed
neurological scores. The blue and red vertical lines represent the landmark time (2 or 3 years) and the censoring time (7.98 years), respectively.
The solid lines represent the predicted longitudinal trajectories or survival probabilities, with dashed lines being 95% credible intervals
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ZOU et al. 15

We repeat the simulation study for R = 100 replications. From each replication r, we obtain the posterior mean, stan-
dard errors, and 95% credible intervals. From a total of R replications, we compute the bias (difference between the
averaged posterior mean and true values of parameters), standard deviation (SD of R posterior means), standard error
(SE, square root of averaged variances), and coverage probability (CP, frequency of 95% CI covering true values of param-
eters). The standard error and coverage probability for parameters dm and 𝛽m are not presented because those parameters
are not in the parameter space as in Section 3.3. To evaluate the estimation performance for mean functions and eigen-
functions, we compute the mean-squared error (MSE), defined as MSE= 1∕G

∑
G (̂f (g) − f (g))2, where G is the number of

grid points for the refined time grid S ∈ [0, 0.01, … , 1] or the dense voxel grid V, f (g) is the true function, and the mean
of estimated functions ̂f (g) = 1∕R

∑R
r=1
̂f r(g). We apply the dynamic prediction method to the testing dataset for R replica-

tions. From each replication r, we obtain the true and estimated iAUC and iBS for landmark times at 0.4, 0.5, 0.55, and
0.6. The prediction window is set as 𝛿t = (0.1, 0.11, … , 0.25). From R replications, we average and compare the true and
estimated iAUC and iBS values.

5.2 Simulation results

Table 4 summarizes the bias, SD, SE, and CP for parameters from 100 replications. Results suggest that for most param-
eters, biases are close to zero, with SD being close to SE, and CP being close to the nominal level 0.95 (except for the
parameter d11). The results for simulation Setting 2 (the sample size is 1200) displayed in Table S3 suggest that we have
much smaller bias, SD, and SE in the parameters 𝛾m3, 𝛾m4, and 𝛾m5 as compared with simulation Setting 1 (the sam-
ple size is 800). Table 4 suggests that the SD and SE for 𝜸m are close, which indicates the accuracy of the estimation
algorithm. Table 4 also suggests that the mean functions and eigenfunctions are estimated close to the true functions with
mean-squared error being close to zero. Table 5 summarizes the mean of true and estimated iAUC and iBS from 100 repli-
cations. Results suggest that the estimated iAUC and iBS values are close to the true iAUC and iBS values, respectively,
for all landmark times. Tables 4 and 5 support the validity of the estimation and dynamic prediction method.

The results for simulation Settings 1 to 4 presented in Supplementary Tables S3 to S5 suggest that in all settings, the
parameters are estimated with small bias and the coverage probabilities are close to the nominal value of 0.95, and the
estimated iAUC and iBS are close to their true values. For Model 3 - 2S (two-stage approach based on Model 2, the instan-
taneous model), the results presented in Supplementary Table S6 suggests that the estimated parameters have large bias
and low coverage probabilities (i.e., parameters 𝛽2, 𝛽3, 𝜎1, 𝜎2, 𝜎3, and 𝜸m). The prediction results for the other four can-
didate models are presented in Supplementary Table S7. The results suggest that the estimated iAUC and iBS values are
close to their true values for Model 3 - 2S (two-stage approach) and Model 3 - MJM-MRI (multivariate joint model with
MRI data), while Model 3 - bCox (Cox model using baseline longitudinal outcomes) and Model 3 - NM (non-mixed func-
tional model) have poor prediction performance. Comparing with Model 3 - MJM-MRI, our methods use non-parametric
functional mixed models and are more robust to model sparse and nonlinear longitudinal outcomes.

The results for simulation Scenarios 2 and 3 are presented in Supplementary Tables S8 and S9. The results suggest
that for Scenario 2 (no correlation between longitudinal and MRI data), the estimated parameters, functions, and iAUC
and iBS values are close to their true values, with the coverage probabilities close to the nominal level 0.95. For Scenario
3 (misspecification of the functional form F(Xi, t)), we observe large bias in parameters 𝛾ml, and the iAUC and iBS values
are not close to their true values. The results suggest that the method is not sensitive to the correlation between the MRI
and longitudinal outcomes, and is sensitive to the misspecification of the functional form F(Xi, t).

6 DISCUSSION

In this article, we propose the multivariate functional mixed model with MRI data (MFMM-MRI) that simultaneously
models multivariate longitudinal outcomes (ie, neurological scores), baseline magnetic resonance imaging (MRI) data,
and the survival process (ie, dementia onset) for subjects with mild cognitive impairment (MCI) at baseline. We use
the non-parametric functional mixed model to decompose the longitudinal and MRI data into the joint and individual
variation. We adopt an iterative search procedure to estimate the eigenfunctions and scale parameter for the MRI data.
The Markov Chain Monte Carlo (MCMC) approach based on the No-U-Turn Sampling (NUTS) algorithm is adopted to
obtain posterior samples from the likelihood. We also develop a dynamic prediction method that provides accurate per-
sonalized predictions of longitudinal trajectories and risk of dementia onset, which facilitates clinical decision making
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16 ZOU et al.

T A B L E 4 True values of parameters, bias, standard deviation (SD), standard error (SE), coverage probability (CP), and mean-squared
error (MSE) from 100 simulation replications for simulation Scenario 1, Setting 1 (based on Model 2)

Parameters Bias SD SE CP MSE

Longitudinal outcomes

d01=2 − 0.055 0.103 0.132 0.980 𝜇1(t) 0.000

d02=1 − 0.029 0.065 0.065 0.940 𝜇2(t) 0.000

d11=1 − 0.026 0.065 0.045 0.810 𝜇3(t) 0.000

𝛽2 = − 0.55 − 0.001 0.008 0.008 0.960 𝜙1(t) 0.002

𝛽3 = − 0.6 − 0.001 0.014 0.013 0.930 𝜙2(t) 0.001

𝜎1=1.1 0.001 0.010 0.013 0.990 𝜓1(t) 0.001

𝜎2=0.6 0.002 0.006 0.007 1.000

𝜎3=1.36 0.002 0.012 0.015 0.970

MRI outcomes

dm1=0.1 0.001 0.003 𝜇m(t) 0.000

dm2=0.07 0.002 0.002 𝜙m1(t) 0.064

dm3=0.05 0.001 0.002 𝜙m2(t) 0.090

dm4=0.03 0.000 0.001 𝜓m1(t) 0.003

dm5=0.01 0.000 0.000 𝜓m2(t) 0.003

𝛽m = − 0.05 0.002 0.009 𝜓m3(t) 0.002

𝜎m=0.4 0.000 0.000 𝜓m4(t) 0.000

Survival outcome

𝛼=0.3 0.009 0.105 0.102 0.950 𝜓m5(t) 0.000

𝛾0=0.6 − 0.007 0.052 0.055 0.960

𝛾11=0.35 0.005 0.083 0.090 0.980

𝛾12=0.3 − 0.013 0.088 0.091 0.970

𝛾13 = 0.1 0.000 0.095 0.109 0.980

𝛾m1 = − 0.6 0.076 0.232 0.225 0.940

𝛾m2 = − 1.1 0.019 0.291 0.270 0.960

𝛾m3 = − 0.5 − 0.108 0.395 0.316 0.870

𝛾m4=0.7 0.109 0.463 0.407 0.900

𝛾m5 = − 1.8 0.087 0.670 0.701 0.960

Note: the standard error and coverage probability for parameters dm and 𝛽m are not presented because those parameters are not in the parameter space as in
Section 3.3.

T A B L E 5 True and estimated iAUC and iBS from 100 simulation replications for simulation Scenario 1, Setting 1 (based on Model 2)

Landmark time True iAUC Estimated iAUC True iBS Estimated iBS

T = 0.4 0.818 0.799 0.063 0.065

T = 0.5 0.805 0.786 0.060 0.063

T = 0.55 0.797 0.774 0.058 0.059

T = 0.6 0.785 0.755 0.056 0.058

Abbreviations: iAUC, integrated area under receiver operating characteristic curve; iBS, integrated Brier score.
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ZOU et al. 17

and treatment selection. We apply the proposed MFMM-MRI to the motivating Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) study. We found that higher ADAS-Cog 13 scores (worse cognitive functions) are associated with lower
RAVLT-immediate, RAVLT-learning, MMSE scores, and higher CDR-SB scores (worse memory functions and functional
activities). We discover that higher functional principal component (FPC) scores (worse cognitive functions) are associ-
ated with a greater decrease in voxel volumes in MRI data. For the survival outcome, we conclude that additional ApoE-
𝜖4 alleles, higher ADAS-Cog 13 and CDR-SB scores, and lower RAVLT-immediate scores are associated with a higher
dementia risk. Moreover, the MRI-specific varying pattern is significantly associated with the risk of dementia onset based
on the likelihood ratio test. The dynamic prediction results show that the proposed instantaneous model with whole-brain
voxels has the best prediction performance in terms of calibration and discrimination measurements among all candidate
models. The simulation study supports the validity and accuracy of the estimation and dynamic prediction method.

The multivariate functional mixed model with MRI data (MFMM-MRI) leverages multimodal data, which are predic-
tive of dementia occurrence and AD progression. Comparing with existing methods (ie, parametric linear models11 and
the model without MRI data10), our approach provides more accurate prediction of AD dementia and facilitates treatment
selection for health care professionals and patients at early disease stages (ie, mild cognitive impairment). Additionally,
the MFMM-MRI model provides the association of the neurological scores, MRI data, and the survival outcome so that
clinicians may determine how each diagnostic test may change this individual’s prognosis.

There are several limitations to address as future directions. First, the proposed MFMM-MRI models continuous
longitudinal outcomes with normality assumption. The longitudinal submodel of MFMM-MRI may be extended to a gen-
eralized functional mixed model to model outcomes with distributions in the exponential family, for example, ordinal,
binary, or count.50 Second, as stated in Zou et al,11 our voxel selection approach is an ad hoc procedure to reduce the mem-
ory burden in the functional principal component analysis (FPCA). The high-dimensional FPCA using the singular value
decomposition (SVD) for the partitioned MRI data may be adopted to reduce the computational and memory burden.51

Alternatively, the MRI data can be treated as a spatial region embedded in three-dimensional space and multivariate
FPCA may be applied.52 Third, the MRI submodel of MFMM-MRI handles baseline MRI data only, while longitudinal
sMRI data are available for some subjects. Thus, the functional mixed model may be extended to model two-dimensional
MRI data observed on the sparse time and dense voxel grid. Additionally, for the survival submodel of MFMM-MRI,
the accelerated failure time (AFT) model is another alternative and the Bayesian assessment criteria may be adopted to
select the model with the best fit.53 Fourth, in the longitudinal and MRI models (1) and (2), we incorporate the correla-
tion between the MRI data and longitudinal outcomes via shared FPC scores, but the baseline MRI data may also change
longitudinal trajectories. Thus, the functional form F(Xi, t) in the survival model (3) may be extended to account for the
interaction between the longitudinal outcomes and MRI data. Specifically, the interaction between the FPC scores of the
longitudinal outcomes and MRI data may be included in both the random-effects model and instantaneous model.

As stated in Section 1, recent AD studies collect multi-omics data, for example, the ADNI study collects genome, tran-
scriptome, and proteome data, and so forth, which provide unique insights to determine disease mechanism together
with neurological assessments and imaging data.54 One recent research article investigated the convolutional neural net-
work (CNN) that integrated multi-omics data into kernel matrices and identified significant associations between single
nucleotide variants (SNVs) and quantitative AD traits, including biospecimen samples and MRI data.55 Mo et al proposed
a Bayesian latent variable model that clustered multi-omics data and used the Bayesian variable selection approach to
reduce the high-dimensionality and determine significant latent variables.56 As a future direction, the extension of the
above methods to modelling multimodal data, including multi-omics data, longitudinal neurological data, and MRI data,
and efficient estimation algorithms are worth of further investigation.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.
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